ECE380 Digital Logic

Optimized Implementation of Logic Functions:
Strategy for Minimization,
Minimum Product-of-Sums Forms,
Incompletely Specified Functions

Terminology

• For a given term, each appearance of a variable (in true or complemented form) is called a literal
 – xyz’ => three literals
 – abc’d => four literals
• Any ‘1’ or group of ‘1’s that can be combined on a K-map represents an implicant of a function
• An implicant is a prime implicant if it cannot be combined with another implicant to remove a variable
• A collection of implicants that account of all valuations for which a given function is ‘1’ is called a cover of that function
• Cost is the number of gates plus the total number of inputs to all gates in the circuit
Terminology example

\[f(a,b,c,d) = \Sigma m(0,1,4,5,7,9,11) \]

Example Implicants: all single '1's,
- \(a'c' \), \(a'b'c' \),
- \(ab'd \), \(ab'd \)

Prime Implicants: \(a'c' \), \(a'bd \), \(ab'd \), \(b'c'd \)

\[f(a,b,c,d)_{\text{min}} = a'c' + a'bd + ab'd \]

Thus, a minimum SOP form contains only (but not necessarily all) prime implicants.

Prime implicants distinctions

- **Essential**: needed to form a minimum solution
- **Nonessential**: not necessarily needed to form a minimum solution

All prime implicants: \(b'd \), \(a'bc' \), \(abc \)
- \(a'c'd \), \(acd \)

Essential primes: \(b'd \), \(a'bc' \), \(abc \)

Nonessential primes: \(a'c'd \), \(acd \)

\[f(a,b,c,d)_{\text{min}} = b'd + a'bc' + abc \]

Minimum contains all essential and possibly some nonessential primes
Prime implicants example

Identify all prime implicants for the given truth table. Which are essential and which are nonessential? What is a minimum SOP expression for this function?

<table>
<thead>
<tr>
<th>cd</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Essential primes: a’c, ac’d
Nonessential primes: a’bd, bc’d

One of these must be included to form a minimum solution

\[f(a,b,c,d)_{\text{min}}: a’c + ac’d + \begin{cases} a’bd \\ bc’d \end{cases} \]
Minimization of POS expressions

- POS minimization using K-maps proceeds exactly as does SOP form except that groupings of ‘0’s in the K-map are used to form POS terms.
- K-map can be constructed directly from ΠM expression for a function.
- Place ‘0’s in the K-map for every maxterm in the ΠM expression.

Minimization of POS example

$$f(a,b,c) = (a+b'+c')(a'+b+c')(a'+b'+c)(a'+b'+c')$$

$$f(a,b,c) = \Pi M(3,5,6,7)$$

$$f(a,b,c) = (a'+b')(b'+c')(a'+c')$$
Minimization of POS example

\[f(a,b,c,d) = \Pi M(0,1,4,8,10-12,14,15) \]

\[f(a,b,c,d)_{\text{min}} = (a+b+c)(a'+c')(c+d) \]

K-map groupings example

- Draw the K-map and give the minimized POS logic expression for the following.
 - \[f(a,b,c) = \Pi M(0,2,3,5-7) \]
- Show the groupings made in the K-map
Incompletely specified functions

- In digital systems it often happens that some input conditions (i.e. some input valuations) can never happen.
- An input combination that can never happen is referred to as a *don’t care* condition.
- As a circuit is designed, a don’t care condition can be ignored (i.e. the output for that condition can be treated as 0 or 1 in the truth table).
- A function that has don’t care condition(s) is said to be *incompletely specified*.

Example function with don’t cares

Assume for a three variable function $f(x,y,z)$ that the input combination $xy=01$ never occurs, otherwise the function is $\Sigma m(0,1,4,5)$.

\[
f(x,y,z) = \Sigma m(0,1,4,5) + D(2,3)
\]

Or

\[
f(x,y,z) = \Pi M(6,7) \cdot D(2,3)
\]
Example function with don’t cares

\[f(x,y,z) = \Sigma m(0,1,4,5) + D(2,3) \]
\[f(x,y,z) = \Pi M(6,7) \cdot D(2,3) \]

Minimum SOP form

1. Choose a minterm (a ‘1’ in the K-map) which is not yet covered (don’t consider d’s).
2. Find all adjacent ‘1’s and ‘d’s (check the n adjacent cells for an n-variable K-map).
3. If a single term (i.e. a single looping) covers the ‘1’ and all adjacent ‘1’s and ‘d’s then the looping forms an essential prime implicant. Loop the essential prime.
4. Repeat steps 1-3 until all essential prime implicants are located.
5. Find a minimum set of nonessential prime implicants to cover (loop) the remaining ‘1’s. If more than 1 set is possible, choose the set with the minimum number of literals (the largest grouping).
Minimum POS form

1. Choose a maxterm (a ‘0’ in the K-map) which is not yet covered (don’t consider d’s).
2. Find all adjacent ‘0’s and ‘d’s (check the n adjacent cells for an n-variable K-map).
3. If a single term (i.e. a single looping) covers the ‘0’ and all adjacent ‘0’s and ‘d’s then the looping forms an essential prime implicant. Loop the essential prime.
4. Repeat steps 1-3 until all essential prime implicants are located.
5. Find a minimum set of nonessential prime implicants to cover (loop) the remaining ‘0’s. If more than 1 set is possible, choose the set with the minimum number of literals (the largest grouping).