ECE380 Digital Logic

Number Representation and Arithmetic Circuits:
Other Number Representations

Other number representations

- Previously, we dealt with binary integers (signed or unsigned) in a positional number representation
- Other number representations are also commonly used:
 - Fixed-point: allows for fractional representation
 - Floating-point: allows for high precision, very large and/or very small numbers
 - Binary-coded decimal (BCD): another form for integer representation
Fixed-point numbers

- A **fixed-point** number consists of integer and fraction parts.
- In positional notation, it is written as:
 \[B = b_{n-1}b_{n-2} \ldots b_1b_0.b_{-1}b_{-2} \ldots b_{-k} \]
- With a corresponding value of:
 \[V(B) = \sum_{i=-k}^{n-1} b_i \times 2^i \]
- The position of the radix point is assumed to be fixed.

For example,

\[B = (01001010.10101)_2 \]
\[B = 1 \times 2^6 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} + 1 \times 2^{-5} \]
\[B = 64 + 8 + 2 + .5 + .125 + .03125 \]
\[B = (74.65625)_{10} \]
\[B = (4A.A8)_{16} \]

- Logic circuits that deal with fixed-point numbers are essentially the same as those used for integers.
Floating-point numbers

- Fixed-point numbers have a range that is limited by the significant digits used to represent the number.
- For some applications, it is often necessary to deal with numbers that are very large (or very small).
- For these cases, it is better to use a floating-point representation in which numbers are represented by a mantissa comprising the significant digits and an exponent of the radix \(R \).

The format is:

\[\text{Mantissa} \times R^{\text{Exponent}} \]

The numbers are usually normalized such that the radix point is placed to the right of the first non-zero digit (for example, \(5.234 \times 10^{43} \) or \(3.75 \times 10^{-35} \)).

IEEE single precision format

- The IEEE defines a 32-bit (single precision) format for floating point values:
 - Sign bit (S): most significant bit
 - 8-bit exponent field (E): excess-127 exponent
 - True exponent = \(E - 127 \)
 - \(E=0 \) \(\rightarrow \) 32-bit value = 0
 - \(E=255 \) \(\rightarrow \) 32-bit value = \(\infty \)
 - 23-bit mantissa (M)

The format is:

\[\text{S} \quad \text{E} \quad \text{M} \]

- Sign:
 - 0 denotes +
 - 1 denotes -

- 8-bit excess-127 exponent

- 23-bit mantissa
IEEE single precision format

- The IEEE standard calls for a normalized mantissa, which means that the most-significant bit is always set to 1.
- It is not necessary to include this bit explicitly in the mantissa field
 - If M is the value in the 23-bit mantissa field, the true (24-bit) mantissa is actually 1.M
- The value of the floating point number is then
 - Value = (-1)^S.M x 2^{E-127}

Floating-point example

- For example,

 01000000011000000000000000000000

 =+(1.11)_2 x 2^{(128-127)}
 =+(1.11)_2 x 2^1
 =+(11.1)_2
 =+(1x2^1 + 1x2^0 + 1x2^{-1}) = (3.5)_{10}

 What is the following?

 00111111011000000000000000000000
Binary-coded-decimal numbers

- It is possible to represent decimal numbers simply by encoding each decimal digit in binary form
 - Called binary-coded-decimal (BCD)
- Because there are 10 digits to represent, it is necessary to use four bits per digit
 - From 0=0000 to 9=1001
 - \((01111000)_{BCD}=(78)_{10}\)
- BCD representation was used in some early computers and many handheld calculators
 - Provides a format that is convenient when numerical information is to be displayed on a simple digit-oriented display

ASCII character code

- The most popular code for representing information in computers is used for both numbers and letters and some control codes
- It is the American Standard Code for Information Interchange (ASCII) code
- ASCII code uses seven-bit patterns to represent 128 different symbols including
 - Digits (0-9)
 - Lowercase (a-z) and uppercase (A-Z) characters
 - Punctuation marks and other commonly used symbols
 - Control codes
- The 8-bit extended ASCII code is used to represent all of the above and another 128 graphics characters
Example ASCII character codes

- \((1000001)_{\text{ASCII}} = (41H) = 'A'\)
- \((1000010)_{\text{ASCII}} = (42H) = 'B'\)

- \((1100001)_{\text{ASCII}} = (61H) = 'a'\)
- \((1100010)_{\text{ASCII}} = (62H) = 'b'\)

- \((0110000)_{\text{ASCII}} = (30H) = '0'\)
- \((0111001)_{\text{ASCII}} = (39H) = '9'\)

- ASCII table given in the textbook