ECE 482/582 Digital Image Processing Project #1
Connected Component Labeling Function

For this project you will create a MATLAB function that implements a connected component labeling algorithm. The function is to be capable of operating on a square 8-bit grayscale image. The size of the image is not predetermined, but can be assumed to be at most 1024×1024 pixels. The function is to have the following form:

\[[X] = \text{cclabel}(f, 'type', V_{\text{min}}, V_{\text{max}}); \]

where \(f \) is the input image, \(\text{type} \) is the connectivity type (4 or 8), and \(V_{\text{min}} \) and \(V_{\text{max}} \) determine the range of the set \(V \) used to connect components. \(X \) is the returned array. The size of \(X \) should be the size of \(f \). Values of \(X \) should be:

\[X(x, y) = \begin{cases} 0 & \text{if } f(x, y) \notin V \\ \text{Component number, } L \ (L \geq 1) & \text{otherwise} \end{cases} \]

Obtain (or construct) at least three suitable test images for your algorithm.

ECE582 students only: The set \(V \) is not given by a \(V_{\text{min}} \) and \(V_{\text{max}} \) quantity. Rather, the set \(V \) is to be constructed using one of two methods. First, a set \(V \) may be passed to the function. In this case, \(V \) may be an arbitrary set of valid values. For the second method, \(V \) should be constructed using pixel values from \(f \). Devise a suitable set of criteria for creating reasonable \(V \). There may be multiple sets for \(V \).