The histogram of a digital image, \(f \) (with intensities \([0, L-1]\)) is a discrete function
\[h(r_k) = n_k \]
Where \(r_k \) is the \(k^{th} \) intensity value and \(n_k \) is the number of pixels in \(f \) with intensity \(r_k \)
Normalizing the histogram is common practice
- Divide the components by the total number of pixels in the image
 - Assuming an \(MN \) image, this yields
 \[p(r_k) = \frac{n_k}{MN} \text{ for } k = 0, 1, 2, \ldots, L-1 \]
 - \(p(r_k) \) is, basically, an estimate of the probability of occurrence of intensity level \(r_k \) in an image
 \[\sum p(r_k) = 1 \]

Uses for Histogram Processing
- Image enhancements
- Image statistics
- Image compression
- Image segmentation
- Simple to calculate in software
- Economic hardware implementations
 - Popular tool in real-time image processing
- A plot of this function for all values of \(k \) provides a global description of the appearance of the image (gives useful information for contrast enhancement)

Histogram Examples
- Four basic image types and their corresponding histograms
 - Dark
 - Light
 - Low contrast
 - High contrast
- Histograms commonly viewed in plots as
 \[h(r_k) = n_k \text{ versus } r_k \]
 \[p(r_k) = \frac{n_k}{MN} \text{ versus } r_k \]
MATLAB Histogram Function

```matlab
function [h]=histogram(f);
[xmax,ymax]=size(f);
h=linspace(0,0,256);
for x=1:xmax
    for y=1:ymax
        h(f(x,y))=h(f(x,y))+1;
    end;
end;
```

Histogram Equalization

- Histogram equalization is a process for increasing the contrast in an image by spreading the histogram out to be approximately uniformly distributed.
- The gray levels of an image that has been subjected to histogram equalization are spread out and always reach white.
 - The increase of dynamic range produces an increase in contrast.
- For images with low contrast, histogram equalization has the adverse effect of increasing visual graininess.

Histogram Equalization (assumptions)

- The intensity transformation function we are constructing is of the form:
 \[s = T(r) \quad 0 \leq r \leq L - 1 \]
- An output intensity level \(s \) is produced for every pixel in the input image having intensity \(r \).
- We assume:
 - \(T(r) \) is monotonically increasing in the interval \(0 \leq r \leq L - 1 \).
 - \(0 \leq T(r) \leq L - 1 \) for \(0 \leq r \leq L - 1 \).
- If we define the inverse:
 \[r = T^{-1}(s) \quad 0 \leq s \leq L - 1 \]
- Then \(T(r) \) should be strictly monotonically increasing.
Histogram Equalization (continued)

- Histogram equalization requires construction of a transformation function s_k
 $$s_k = T(r_k) = \frac{1}{M \times N} \sum_{j=1}^{M \times N} r_k$$
- where r_k is the kth gray level, n_k is the number of pixels with that gray level, $M \times N$ is the number of pixels in the image, and $k=0,1,\ldots,L-1$
- This yields an s with as many elements as the original image’s histogram (normally 256 for our test images)
- The values of s will be in the range $[0,1]$. For constructing a new image, s would be scaled to the range $[1,256]$

An Interactive MATLAB Histogram Function

```matlab
function winhist(action);
global p1
global p2
global FIG
if nargin<1,
    action='initialize';
end;
if strcmp(action,'initialize'),
    figNumber=figure( ... 
        'Name','Histogram Plot', ... 
        'NumberTitle','off', ... 
        'Position',[100 100 500 500], ... 
        'Visible','off');
    colordef(figNumber,'black')
p1=axes( ... 
    'Position',[0.25 0.55 0.40 0.40]);
p2=axes( ... 
    'Position',[0.25 0.05 0.40 0.40]);
end;
```
An Interactive MATLAB Histogram Function

% The LOAD IMAGE button
btnNumber=1;
yPos=top-(btnNumber-1)*(btnHt+spacing);
labelStr='Load Image';
callbackStr='winhist(''''load''')';
% Generic button information
btnPos=[left yPos-btnHt btnWid btnHt];
uicontrol(...
 'Style','pushbutton',...
 'Units','normalized',...
 'Position',btnPos,....
 'String',labelStr,...
 'Callback',callbackStr);

An Interactive MATLAB Histogram Function

elseif strcmp(action,'histogram'),
 axes(p2);
 h=histogram(FIG);
 bar(h,'w'),axis([1 256 0 max(h)*1.10]);
elseif strcmp(action,'load'),
 axes(p1);
 cd('L:\ece582\matlab');
 [file,path]=uigetfile('*.bmp','Open');
 [f,fmap]=bmpread(fullfile(path,file));
 FIG=f;
 image(f);colormap(gray(256));
end;