Computer Vision & Digital Image Processing

Image Restoration and Reconstruction III

Order-Statistic filters

- Median filter
- Max and min filters
- Midpoint filter
- Alpha-trimmed mean filter
Median filter

- Replaces the value of a pixel by the median of the pixel values in the neighborhood of that pixel

\[\tilde{f}(x,y) = \text{median}_{(x,t) \in S_{x,y}} \{ g(x,t) \} \]

- The pixel at \((x,y)\) is included in the calculation
- Works well for various noise types, with less blurring than linear filters of similar size
- Odd sized neighborhoods and efficient sorts yield a computationally efficient implementation
- Most commonly used order-statistic filter

Median filter example

[Image of median filter example]
Max and min filters

- The 100th percentile filter (or max filter) is given by
 \[\hat{f}(x, y) = \max_{(s, t) \in S_{x,y}} \{g(s, t)\} \]

- Useful for finding the brightest points in an image
- Tends to reduce pepper noise (i.e. dark pixel values)
- The 0th percentile filter (or min filter) is given by
 \[\hat{f}(x, y) = \min_{(s, t) \in S_{x,y}} \{g(s, t)\} \]

- Both filters require a data sort

Max and min filter examples

FIGURE 5.11
(a) Result of filtering Fig. 5.8(a) with a max filter of size 3×3. (b) Result of filtering 5.8(b) with a min filter of the same size.
Midpoint filter

- Replaces the value of a pixel by the midpoint between the maximum and minimum pixels in a neighborhood

\[
\hat{f}(x, y) = \frac{1}{2} \left[\max_{(s,t) \in S_{x,y}} \{g(s,t)\} + \min_{(s,t) \in S_{x,y}} \{g(s,t)\} \right]
\]

- Combines order statistics and averaging
- Works best for randomly distributed noise (e.g. Gaussian or uniform)

Alpha-trimmed mean filter

- If we delete the $d/2$ lowest and the $d/2$ highest intensity values from a neighborhood $g(s,t)$ of size $m*n$ and let $g_r(s,t)$ represent the remaining $mn-d$ pixels, the average of the remaining pixels is called an alpha-trimmed mean filter and is given by:

\[
\hat{f}(x, y) = \frac{1}{mn-d} \sum_{(s,t) \in S_{x,y}} g_r(s, t)
\]

- d can vary from 0 to $mn-1$
- If $d=0$ the filter becomes the arithmetic mean filter
- If $d=mn-1$, the filter reduces to a median filter
Alpha-trimmed mean filter example

![Image of filter example]

FIGURE 5.12
(a) Image corrupted by additive uniform noise.
(b) Image additionally corrupted by additive salt-and-pepper noise.
Image (b) filtered with a 5×5:
- (e) arithmetic mean filter;
- (d) geometric mean filter;
- (c) median filter;
- and (f) alpha-trimmed mean filter with $d = 5$.

Adaptive filters

- All filters considered thus far are applied to an image without regard for how image characteristics may vary from one point to another in the image.
- An *adaptive* filter is one whose behavior can change based on statistical characteristics of an area within the image.
 - This is typically the $m\times n$ filter region in the $S_{x,y}$ window.
- Generally provides superior performance at the cost of increased filter complexity.
Adaptive, local noise reduction filter

- The *mean* and *variance* are reasonable parameters upon which to base a simple adaptive filter
 - They are closely related to image properties
 - The *mean* gives the average intensity over a region
 - The *variance* gives a measure of the contrast in a region
- A simple filter will operate on a local region $S_{x,y}$ with the response at any point (x,y) base on four quantities:
 - The value of the noisy image at $(x,y): g(x,y)$
 - The variance of the noise corrupting $f(x,y)$ to form $g(x,y): \sigma^2_\eta$
 - The local mean of the pixels in $S_{x,y}$: m_L
 - The local variance of the pixels in $S_{x,y}$: σ^2_L

Adaptive, local noise reduction filter algorithm

- If $\sigma^2_\eta = 0$, return the value $g(x,y)$
 - This is the zero-noise case where $g(x,y) = f(x,y)$
- If the local variance (σ^2_L) is high relative to σ^2_η, return a value close to $g(x,y)$
 - A high local variance is generally associated with image features (*i.e.* an edge, etc.) and should be preserved
- If $\sigma^2_L = \sigma^2_\eta$, return the arithmetic mean of the pixels in $S_{x,y}$
 - This occurs if the local area has the same properties as the overall image. Local noise is reduced by averaging.
Adaptive, local noise reduction filter equation

- An adaptive expression may be written as:
 \[\hat{f}(x, y) = g(x, y) - \frac{\sigma^2_\eta}{\sigma_L^2}[g(x, y) - m_L] \]

- The only quantity that must be known is \(\sigma^2_\eta \)
- Everything else can be computed from \(S_{x,y} \)
- An assumption here is that \(\sigma^2_\eta \leq \sigma^2_L \)
 - This is generally reasonable given that the noise we are considering is additive and position independent
 - If this is not true then a simple test could set the ratio of the variances to one if \(\sigma^2_\eta > \sigma^2_L \)

Adaptive, local noise reduction filter example
Adaptive median filter

- A median filter works well in the spectral density of the impulse noise is not large
 - A P_a and P_b less than 0.2 is a good general rule of thumb
- An adaptive median filter can handle noise with probabilities greater than these
- An additional benefit is that the adaptive median filter attempts to preserve detail while smoothing the impulse noise
- The adaptive median filter works in a rectangular window area $S_{x,y}$
 - The size of $S_{x,y}$ is not fixed
- The output of the filter is a single value that will be used to replace the center value of $S_{x,y}$

Adaptive median filter algorithm

- Consider the following notation
 - z_{min} = minimum intensity value in $S_{x,y}$
 - z_{max} = maximum intensity value in $S_{x,y}$
 - z_{med} = median intensity of values in $S_{x,y}$
 - $z(x,y)$ = intensity value at (x,y)
 - S_{max} = maximum allowed size of $S_{x,y}$
- The algorithm works in two stages (denoted A and B)

Stage A:
- $A_1 = z_{\text{med}} - z_{\text{min}}$
- $A_2 = z_{\text{med}} - z_{\text{max}}$
 - If $A_1 > 0$ AND $A_2 < 0$, goto Stage B
 - Else increase window size
 - If window size $\leq S_{\text{max}}$ repeat Stage A
 - Else output z_{med}

Stage B:
- $B_1 = z_{x,y} - z_{\text{min}}$
- $B_2 = z_{x,y} - z_{\text{max}}$
 - If $B_1 > 0$ AND $B_2 < 0$, output $z_{x,y}$
 - Else output z_{med}
Adaptive median filter example

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities $P_a = P_b = 0.25$. (b) Result of filtering with a 7×7 median filter. (c) Result of adaptive median filtering with $S_{\text{max}} = 7$.