Order-Statistic filters

- Median filter
- Max and min filters
- Midpoint filter
- Alpha-trimmed mean filter

Order-Statistic filters

- Median filter
- Max and min filters
- Midpoint filter
- Alpha-trimmed mean filter

Computer Vision & Digital Image Processing

Image Restoration and Reconstruction III

Order-Statistic filters

- Median filter
- Max and min filters
- Midpoint filter
- Alpha-trimmed mean filter

Median filter

- Replaces the value of a pixel by the *median* of the pixel values in the neighborhood of that pixel
 \[\hat{j}(x,y) = \text{median}(g(x,y)) \]
- The pixel at \((x,y)\) is included in the calculation
- Works well for various noise types, with less blurring than linear filters of similar size
- Odd sized neighborhoods and efficient sorts yield a computationally efficient implementation
- Most commonly used order-statistic filter

Max and min filters

- The 100th percentile filter (or max filter) is given by
 \[\hat{j}(x,y) = \max_{(x,y) \in G} g(x,y) \]
- Useful for finding the brightest points in an image
- Tends to reduce pepper noise (i.e. dark pixel values)
- The 0th percentile filter (or min filter) is given by
 \[\hat{j}(x,y) = \min_{(x,y) \in G} g(x,y) \]
- Both filters require a data sort

Max and min filters

- The 100th percentile filter (or max filter) is given by
 \[\hat{j}(x,y) = \max_{(x,y) \in G} g(x,y) \]
- Useful for finding the brightest points in an image
- Tends to reduce pepper noise (i.e. dark pixel values)
- The 0th percentile filter (or min filter) is given by
 \[\hat{j}(x,y) = \min_{(x,y) \in G} g(x,y) \]
- Both filters require a data sort
Midpoint filter

- Replaces the value of a pixel by the midpoint between the maximum and minimum pixels in a neighborhood
 \[\hat{f}(x, y) = \frac{1}{2} \left(\max_{(s,t) \in S_{x,y}} g(s, t) + \min_{(s,t) \in S_{x,y}} g(s, t) \right) \]
- Combines order statistics and averaging
- Works best for randomly distributed noise (e.g., Gaussian or uniform)

Alpha-trimmed mean filter

- If we delete the \(\frac{d}{2} \) lowest and the \(\frac{d}{2} \) highest intensity values from a neighborhood \(g(s, t) \) of size \(mn \) and let \(g_{r}(s, t) \) represent the remaining \(mn-d \) pixels, the average of the remaining pixels is called an alpha-trimmed mean filter and is given by:
 \[\hat{f}(x, y) = \frac{1}{mn-d} \sum_{(s,t) \in S_{x,y}} g_{r}(s, t) \]
- \(d \) can vary from 0 to \(mn-1 \)
- If \(d=0 \) the filter becomes the arithmetic mean filter
- If \(d=mn-1 \), the filter reduces to a median filter

Alpha-trimmed mean filter example

Adaptive filters

- All filters considered thus far are applied to an image without regard for how image characteristics may vary from one point to another in the image
- An adaptive filter is one whose behavior can change based on statistical characteristics of an area within the image
 - This is typically the \(mn \) filter region in the \(S_{x,y} \) window
- Generally provides superior performance at the cost of increased filter complexity

Adaptive, local noise reduction filter

- The mean and variance are reasonable parameters upon which to base a simple adaptive filter
 - They are closely related to image properties
 - The mean gives the average intensity over a region
 - The variance gives a measure of the contrast in a region
- A simple filter will operate on a local region \(S_{x,y} \) with the response at any point \((x, y)\) base on four quantities:
 - The value of the noisy image at \((x, y)\): \(g(x, y) \)
 - The variance of the noise corrupting \(f(x, y) \) to form \(g(x, y) \): \(\sigma_{\eta}^2 \)
 - The local mean of the pixels in \(S_{x,y} \): \(\mu_{L} \)
 - The local variance of the pixels in \(S_{x,y} \): \(\sigma_{L}^2 \)

Adaptive, local noise reduction filter algorithm

- If \(\sigma_{\eta}^2 = 0 \), return the value \(g(x, y) \)
 - This is the zero-noise case where \(g(x, y) = f(x, y) \)
- If the local variance \(\sigma_{L}^2 \) is high relative to \(\sigma_{\eta}^2 \), return a value close to \(g(x, y) \)
 - A high local variance is generally associated with image features (i.e., an edge, etc.) and should be preserved
- If \(\sigma_{L}^2 = \sigma_{\eta}^2 \), return the arithmetic mean of the pixels in \(S_{x,y} \)
 - This occurs if the local area has the same properties as the overall image. Local noise is reduced by averaging.
Adaptive, local noise reduction filter equation

- An adaptive expression may be written as:
 \[
 \hat{j}(x, y) = g(x, y) - \frac{\eta^2}{\sigma^2} [g(x, y) - m_i]
 \]
- The only quantity that must be known is \(\sigma^2 \eta \)
- Everything else can be computed from \(S_{x,y} \)
- An assumption here is that \(\sigma^2 \eta \leq \sigma^2_L \)
 - This is generally reasonable given that the noise we are considering is additive and position independent
 - If this is not true then a simple test could set the ratio of the variances to one if \(\sigma^2 \eta > \sigma^2_L \)

Adaptive, local noise reduction filter example

Adaptive median filter

- A median filter works well in the spectral density of the impulse noise is not large
 - A \(P_a \) and \(P_b \) less than 0.2 is a good general rule of thumb
- An adaptive median filter can handle noise with probabilities greater than these
- An additional benefit is that the adaptive median filter attempts to preserve detail while smoothing the impulse noise
- The adaptive median filter works in a rectangular window area \(S_{x,y} \)
 - The size of \(S_{x,y} \) is not fixed
- The output of the filter is a single value that will be used to replace the center value of \(S_{x,y} \)

Adaptive median filter example

Adaptive median filter algorithm

- Consider the following notation
 - \(z_{\text{min}} \) = minimum intensity value in \(S_{x,y} \)
 - \(z_{\text{max}} \) = maximum intensity value in \(S_{x,y} \)
 - \(z_{\text{med}} \) = median intensity of values in \(S_{x,y} \)
 - \(z(x,y) \) = intensity value at \((x,y) \)
 - \(S_{\max} \) = maximum allowed size of \(S_{x,y} \)
- The algorithm works in two stages (denoted \(A \) and \(B \))

 Stage A:
 - \(A1 = z_{\text{med}} - z_{\text{min}} \)
 - \(A2 = z_{\text{med}} - z_{\text{max}} \)
 - If \(A1 > 0 \) AND \(A2 < 0 \), goto Stage B
 - Else increase window size
 - If window size \(\leq S_{\max} \) repeat Stage A
 - Else output \(z_{\text{med}} \)

 Stage B:
 - \(B1 = z(x,y) - z_{\text{min}} \)
 - \(B2 = z(x,y) - z_{\text{max}} \)
 - If \(B1 > 0 \) AND \(B2 < 0 \), output \(z(x,y) \)
 - Else output \(z_{\text{med}} \)

Adaptive median filter example

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities \(P_a = P_b = 0.25 \). (b) Result of filtering with a \(3 \times 3 \) median filter. (c) Result of adaptive median filtering with \(S_{\max} = 7 \). (d) Result of adaptive median filtering with \(S_{\max} = 7 \).