Global Processing via Graph-Theoretic Techniques

- The previous method for edge-linking discussed is based on obtaining a set of edge points through a gradient operation.
- As the gradient is a derivative, the operation is seldom suitable as a preprocessing step in situations characterized by high noise content.
- Here, we discuss a global approach based on representing edge segments in the form of a graph and searching the graph for low-cost paths that correspond to significant edges.
 - This representation provides a rugged approach that performs well in the presence of noise.
 - As might be expected, the procedure is considerably more complicated and requires more processing time than the methods discussed so far.

Basic Graph Theory

- We begin the development with some basic definitions.
- A graph $G = (N, A)$ is a finite, nonempty set of nodes N, together with a set A of unordered pairs of distinct elements of N.
- Each pair (n_i, n_j) of A is called an arc.
- A graph in which the arcs are directed is called a directed graph.
- If an arc is directed from node n_i to node n_j, then n_j is said to be a successor of its parent node n_i.
- The process of identifying the successors of a node is called expansion of the node.
Basic Graph Theory (continued)

- The process of identifying the successors of a node is called expansion of the node.
- In each graph we define levels, such that level 0 consists of a single node, called the start node, and the nodes in the last level are called goal nodes.
- A cost, \(c(n_i, n_j) \), can be associated with every arc \((n_i, n_j) \).
- A sequence of nodes \(n_1, n_2, \ldots, n_k \) with each node \(n_i \) being a successor of node \(n_{i-1} \), is called a path from \(n_1 \) to \(n_k \), and the cost of the path is

\[
c = \sum_{i=2}^{k} c(n_{i-1}, n_i)
\]

Edge Elements

- An edge element is the boundary between two pixels \(p \) and \(q \), such that \(p \) and \(q \) are 4-neighbors.

- In this context, an edge is a sequence of edge elements.
Edge Element Costs

- Each edge element defined by pixels p and q has an associated cost, defined as
 \[c(p, q) = H - [f(p) - f(q)] \]
- where H is the highest intensity value in the image (7 in this case), f(p) is the intensity value of p, and f(q) is the intensity value of q. As indicated earlier, p and q are 4-neighbors.

Edge Element Cost Graph

- Each node corresponds to an edge element, and an arc exists between two nodes if the two corresponding edge elements taken in succession can be part of an edge.
- The cost of each edge element, computed using the cost equation, is the arc leading into it, and goal nodes are shown as blue rectangles.
- Each path between the start node and a goal node is a possible edge.

Edge Element Cost Graph (continued)

- For simplicity, the edge is assumed to start in the top row and terminate in the last row, so that the first element of an edge can be only
 - \([0,0], (0,1)\) or \([0,1], (0,2)\]
 - and the last element
 - \([2,0], (2,1)\) or \([2,1], (2,2)\)
- The dashed lines represent the minimum-cost path.
- The corresponding edge is

\[
\begin{align*}
0 & \quad 1 & \quad 2 \\
(0) & \quad (1) & \quad (2) \\
\end{align*}
\]
Approximating a Minimum Cost Path

- In general, the problem of finding a minimum-cost path is not trivial in terms of computation.
- Typically, the approach is to sacrifice optimality for the sake of speed, and the following algorithm represents a class of procedures that use heuristics in order to reduce the search effort.
 - Let \(r(n) \) be an estimate of the cost of a minimum-cost path from the start node \(s \) to a goal node, where the path is constrained to go through \(n \).
 - This cost can be expressed as the estimate of the cost of a minimum-cost path from \(s \) to \(n \) plus an estimate of the cost of that path from \(n \) to a goal node; that is,
 \[
 r(n) = g(n) + h(n)
 \]

- Here, \(g(n) \) can be chosen as the lowest cost path from \(s \) to \(n \) found so far, and \(h(n) \) is obtained by using any available heuristic information (such as expanding only certain nodes based on previous costs in getting to that node).
- An algorithm that uses \(r(n) \) as the basis for performing a graph search is as follows.

Step 1: Mark the start node OPEN and set \(g(s) = 0 \).

Step 2: If no node is OPEN exit with failure; otherwise, continue.

Step 3: Mark CLOSED the OPEN node \(n \) whose estimate \(r(n) \) computed from \(r(n) = g(n) + h(n) \) is smallest. (Ties for minimum \(r \) values are resolved arbitrarily, but always in favor of a goal node.)

Step 4: If \(n \) is a goal node, exit with the solution path obtained by tracing back through the pointers; otherwise, continue.

Step 5: Expand node \(n \), generating all of its successors. (If there are no successors go to step 2.)

Step 6: If a successor \(n_i \) is not marked, set \(r(n_i) = g(n) + c(n, n_i) \) mark it OPEN, and direct pointers from it back to \(n \).

Step 7: If a successor \(n_i \) is marked CLOSED or OPEN, update its value by letting \(g'(n_i) = \min(g(n_i), g(n) + c(n, n_i)) \). Mark OPEN those CLOSED successors whose \(g' \) values were thus lowered and redirect to \(n \) the pointers from all nodes whose \(g' \) values were lowered. Go to step 2.

Step 8: If no heuristic information is available (that is, \(h = 0 \)), the procedure reduces to the uniform-cost algorithm of Dijkstra [1959].

In general, this algorithm does not guarantee a minimum-cost path; its advantage is speed via the use of heuristics.

However, if \(h(n) \) is a lower bound on the cost of the minimal-cost path from node \(n \) to a goal node, the procedure indeed yields an optimal path to a goal (Hart, Nilsson, and Raphael [1968]).