Programmable Logic Controllers

Basic Ladder Logic Programming

Outline

• Boolean statements and ladder logic equivalents
 – Logical AND
 – Logical OR
 – Logical NOT
• Commonly used ladder logic sequences
 – Start-stop-seal circuits
 – Basic interlocks
• Properly formatted outputs
Boolean logic control programs

- Boolean logic control programs examine and control on and off states
 - Boolean here is used interchangeably with the word “discrete”
- Each control program (ladder diagram sequence) can contain one or more conditionals
- Example
 - If (a part is on the conveyor) AND (there is not a box in the chute) THEN (turn the conveyor motor on)
- In terms of sensors and actuators this becomes
 - If (sensor_A is ON) AND (sensor_B is NOT ON) THEN (turn actuator_C ON)

Conveyor motor control system
Logical AND ladder diagram

- The logical AND function is constructed by series combinations of digital (discrete) inputs
 - Two (or more) series components

Logical OR ladder diagram

- The logical OR function is constructed by parallel combinations of digital (discrete) inputs
 - Two (or more) parallel components
Logical NOT

- The logical NOT function is constructed by referencing the input signal with a normally closed contact (XIO instruction).

Complex Boolean expressions

- More complex Boolean expressions can be formulated with various serial-parallel combinations of XIC and XIO instructions.
 - NAND, NOR, XOR, XNOR
Start-stop-seal circuits

- For PLC systems without latch and unlatch instructions, a circuit is needed that will allow a process to start, continue to run after a start button is released, and stop under control of another button
 - A circuit that implements this functionality is commonly referred to as a **start-stop-seal** circuit
- A feedback path (i.e. a contact) that references the output is normally used to **seal** around the start contact

Start-stop-seal ladder diagram

Initial state

START pushbutton pressed

START pushbutton released

STOP pushbutton pressed
Start-stop-seal variations

- In practice, several start and/or several stop buttons can be used in a process.
- Start buttons (with XIC instructions) can be used:
 - In series if it is required that ALL be pressed before a process starts.
 - In parallel if pressing ANY start button is to start a process.
- Stop buttons (with XIO instructions) are normally used in series if pressing ANY stop button is to stop a process.

Start-stop-seal circuit example

![Circuit Diagram]
Interlock circuits

- Interlocks can prohibit output(s) from energizing under a certain condition
- Example: O:2/0 should not energize if O:2/1 is energized (and vice versa)

Formatting considerations

- Ladder logic rungs should be formatted so the reader can easily infer the meaning of the intended logic
- One mechanism to help this is the grouping of related signals within an area on a given rung of logic
- For example:
 - Group signals together that have some common intent
 - Start signals
 - Stop signals
 - Emergency stop signals (E-stop)
 - Interlocks
 - Controls that might have greater importance (i.e. E-stop) might be located on the left hand side of the rung if possible
Formatting considerations

This is also a good example of instruction and rung documentation.

Properly formatted outputs

- An output energize instruction (OTE) referencing a specific output bit should appear only once in a ladder logic program.
Properly formatted outputs

• Only one output energize instruction (OTE) should appear in a rung of ladder logic

Properly formatted outputs

• If more than one output is to be controlled by a certain rung of ladder logic, the output energize (OTE) instructions can be placed in parallel