Programmable Logic Controllers

PLC I/O Module Types and PLC Trainer Configuration

Basic Module Types

- Digital (discrete) output modules
 - Optical isolation provided
 - Relay, transistor or triac based
 - Transistor-based outputs may be
 - Current sourcing or
 - Current sinking
- Digital (discrete) input modules
 - Optical isolation provided
 - Diode based
 - Current sinking, sourcing or both depending on device
Relay Output Module

- Coil actuated switch closing
- AC or DC switching
 - Relay determines current carrying capacity
- More expensive relay I/O modules may have two external contacts per relay
 - Separate actuator and power supply can be connected to each relay-controlled circuit
 - Most flexible in terms of power types (AC or DC) and connections
- Less expensive relay I/O module
 - Common contact for a group (or all) outputs
Current Sourcing Transistor Output Module

- **CPU**
- **OUT6 Current →**
- **Actuator**
- **Power**
- **Positive common**

Current Sinking Transistor Output Module

- **CPU**
- **OUT6 Current ←**
- **Actuator**
- **Power**
- **Negative common**
Transistor Output Modules

- PNP transistors used in current sourcing output modules
- Positive common may be shared across all (or groups of) inputs
- NPN transistors used in current sinking output modules
- Negative common may be shared across all (or groups of) inputs
- BE AWARE OF THE OUTPUT TYPE
 - Sourcing vs. Sinking
 - Power supply connections are different between the types

Current Sourcing/Sinking TRIAC Output Module

TRIAC allows current flow in either direction if triac’s gate contact is energized. Power supply polarity is not important. AC is allowed. More expensive than transistor-based modules.
Current Sinking Optoisolated Input Module

![Diagram of Current Sinking Optoisolated Input Module]

Current Sourcing Optoisolated Input Module

![Diagram of Current Sourcing Optoisolated Input Module]
Sinking/Sourcing Optoisolated Input Module

Micrologix 1100 controller

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Output Terminal Block</td>
</tr>
<tr>
<td>2</td>
<td>Battery Connector</td>
</tr>
<tr>
<td>3</td>
<td>Bus Connector Interface to Expansion I/O</td>
</tr>
<tr>
<td>4</td>
<td>Battery</td>
</tr>
<tr>
<td>5</td>
<td>Input Terminal Block</td>
</tr>
<tr>
<td>6</td>
<td>LCD Display</td>
</tr>
<tr>
<td>7</td>
<td>LCD Display Keypad (ESC, OK, Up, Down, Left, Right)</td>
</tr>
<tr>
<td>8</td>
<td>Status LEDs</td>
</tr>
<tr>
<td>9</td>
<td>Memory Module Port Cover(^{11}) or Memory Module(^{21})</td>
</tr>
<tr>
<td>10</td>
<td>DIN Rail Latches</td>
</tr>
<tr>
<td>11</td>
<td>RS-232/485 Communication Port (Channel B, isolated)</td>
</tr>
<tr>
<td>12</td>
<td>Ethernet Port (Channel 1)</td>
</tr>
</tbody>
</table>
Controller Wiring

- 1763-L16BWA
 - 120V AC input power
 - (6) 24 Vdc inputs
 - (4) high-speed 24 Vdc inputs
 - (6) relay outputs
 - (2) voltage inputs 0-10Vdc (Not used on the trainer)

Trainer Wiring
(sink/source input module)

- All inputs (I/0-I/9) have similar wiring.
- I/0-I/2 have a normally open momentary pushbutton
- I/3-I/5 have a normally closed momentary pushbutton
- I/6-I/9 have toggle switches attached to the input
Trainer Wiring
(relay output module)

24Vdc power supply

AC power

All outputs have similar wiring.

MicroLogix™ Analog Input/Output Module (1762-IF2OF2)

- 1a upper panel mounting tab
- 1b lower panel mounting tab
- 2 power diagnostic LED
- 3 module door with terminal identification label
- 4 bus connector with male pins
- 5 bus connector cover
- 6 flat ribbon cable with bus connector (female)
- 7 terminal block
- 8 DIN rail latch
- 9 pull loop
- 10 input type selector switch
Input Type Selection

- Select the input type, current or voltage, using the switch located on the modules circuit board and the input type/range selection bits in the Configuration Data File.
- You can access the switch through the ventilation slots on the top of the module.
 - Switch 1 controls channel 0;
 - switch 2 controls channel 1.
- The factory default setting for both switch 1 and switch 2 is Current. Switch positions are shown below.

Output Type Selection

- The output type selection, current or voltage, is made by wiring to the appropriate terminals, Iout or Vout, and by the type/range selection bits in the Configuration Data File.
Input Data File

For each module, slot x, words 0 and 1 contain the analog values of the inputs.

The module can be configured to use either raw/proportional data or scaled-for-PID data.

Status Bits

- SIx = General status bits for input channels 0 and 1.
- SOx = General status bits for output channels 0 and 1. This bit is set when an error (over- or under-range) exists for that channel, or there is a general module hardware error.
- OIx = Over-range flag bits for input channels 0 and 1.
- OOx = Over-range flag bits for output channels 0 and 1. These bits can be used in the control program for error detection.
- UIx = Under-range flag bits for input channels 0 and 1.
- UOx = Under-range flag bits for output channels 0 and 1. These bits can be used in the control program for error detection.
Output Data File

For each module, slot x, words 0 and 1 contain the channel output data.

Raw/Proportional Format

<table>
<thead>
<tr>
<th>Word</th>
<th>Bit Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Channel 0 Data 0 to 32,760</td>
</tr>
<tr>
<td>1</td>
<td>Channel 1 Data 0 to 32,760</td>
</tr>
</tbody>
</table>

Scaled-for-PID Format

<table>
<thead>
<tr>
<th>Word</th>
<th>Bit Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Channel 0 Data 0 to 16,380</td>
</tr>
<tr>
<td>1</td>
<td>Channel 1 Data 0 to 16,380</td>
</tr>
</tbody>
</table>