Flip-Flops

- The gated latch circuits presented are level sensitive and can change states more than once during the ‘active’ period of the clock signal.
- Circuits (storage elements) that can change their state no more than once during a clock period are also useful.
- Two types of circuits with such behavior:
 - Master-slave flip-flop
 - Edge-triggered flip-flop
Master-slave D flip-flop

- Consists of 2 gated D latches
 - The first, master, changes its state while clock=1
 - The second, slave, changes its state while clock=0

- When clock=1, the master tracks the values of the D input signal and the slave does not change
 - Thus Q_m follows any changes in D and Q_s remains constant
- When the clock signal changes to 0, the master stage stops following the changes in the D input signal
- At the same time, the slave stage responds to the value of Q_m and changes states accordingly
- Since Q_m does not change when clock=0, the slave stage undergoes at most one change of state during a clock cycle
- From an output point of view, the circuit changes Q_s (its output) at the negative edge of the clock signal
Master-slave D flip-flop

Clock

D

Q_m

Q = Q_S

Edge-triggered flip-flop

- A circuit, similar in functionality to the master-slave D flip-flop, can be constructed with 6 NAND gates
Edge-triggered flip-flop

- The previous circuit responds on the positive edge of the clock signal.
- A negative-edge triggered D flip-flop can be constructed by replacing the NAND with NOR gates.

![Positive-edge-triggered D type flip-flop](image1)

![Negative-edge-triggered D type flip-flop](image2)

Comparing D storage elements

![Comparing D storage elements](image3)
Clear and preset inputs

• It may be desirable to specifically set (Q=1) or clear (Q=0) a flip-flop
• Practical flip-flops often have **preset** and **clear** inputs
 – Generally, these inputs are **asynchronous** (they do not depend on the clock signal)

![Diagram of flip-flop with preset and clear inputs]

As long as Preset’=0, Q=1
As long as Clear’=0, Q=0

T flip-flop

• Another flip-flop type, the **T flip-flop**, can be derived from the basic D flip-flop presented
• Feedback connections make the input signal D equal to the value of Q or Q’ under control of a signal labeled T

![Diagram of T flip-flop]
T flip-flop

- The name T derives from the behavior of the circuit, which ’toggles’ its state when T=1
 - This feature makes the T flip-flop a useful element when constructing counter circuits

<table>
<thead>
<tr>
<th>T</th>
<th>Q(t+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q(t)</td>
</tr>
<tr>
<td>1</td>
<td>Q'(t)</td>
</tr>
</tbody>
</table>

Clock

Positive edge triggered

JK flip-flop

- The **JK flip-flop** can also be derived from the basic D flip-flop such that
 \[D = JQ' + K'Q \]
- The JK flip-flop combines aspects of the SR and the T flip-flop
 - It behaves as the SR flip-flop (where J=S and K=R) for all values except J=K=1
 - For J=K=1, it toggles like the T flip-flop
JK flip-flop

<table>
<thead>
<tr>
<th>J</th>
<th>K</th>
<th>Q(t+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q(t)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Q'(t)</td>
</tr>
</tbody>
</table>

Positive edge triggered

JK flip-flop timing diagram

Complete the following timing diagram