Global Clock Network & Phase-Locked Loops

- Clock management is important within digital systems design
 - High speed designs require low latency, low skew clock solutions
 - Low latency – a minimum propagation delay time throughout the device
 - Low skew – a minimum difference between actual clock edges as seen on various points on the device
 - Sources for clock skew?
 » Propagation delay through the device, capacitive loading
 - Cyclone V devices provide the following for clock management
 - Global, regional, and periphery clock networks
 - Multiple phase-locked loops (PLLs)
Phase-Locked Loops (PLLs)

- A PLL is a closed-loop feedback control system that maintains a generated signal in a fixed phase relationship to a reference signal.
- Applications include:
 - Frequency synthesizers for digitally-tuned radio receivers and transmitters
 - FM and AM radio signal demodulation
 - Clock multipliers in digital systems that allow internal elements to run faster (or slower) than external connections, while maintaining precise timing relationships (our basic application in this course)
- Cyclone V PLLs provide general-purpose clocking with clock multiplication (or division) and phase shifting

Typical PLL Architecture
Cyclone V PLLs

- Cyclone V device family contains fractional PLLs that can function as fractional PLLs or integer PLLs
- Provide robust clock management and synthesis for device clock management, and external system clock management
- PLLs offer clock
 - Frequency multiplication and division
 - Phase shifting
 - Programmable duty cycle
 - Multiple modes of operation
 - We will only address one simple mode of operation for our purposes

PLL Location in Cyclone V E A4 Device
PLL Location in Cyclone V E A4 Device

Fractional PLL High-Level Block Diagram
Fractional PLL Usage

- You can configure the fractional PLL to function either in the integer or in the enhanced fractional mode.
- One fractional PLL can use up to 9 output counters and all external clock outputs.
- Fractional PLLs can be used as follows:
 - Reduce the number of required oscillators on the board.
 - Reduce the clock pins used in the FPGA by synthesizing multiple clock frequencies from a single reference clock source.
 - Compensate clock network delay.
 - Zero delay buffering.
 - Transmit clocking for transceivers.

PLL Cascading

- Cyclone V devices support two types of PLL cascading.
- PLL-to-PLL Cascading
 - This cascading mode synthesizes a more precise output frequency than a single PLL in integer mode.
 - Cascading two PLLs in integer mode expands the effective range of the pre-scale counter, N and the multiply counter, M.
- Counter-Output-to-Counter-Output Cascading
 - This cascading mode synthesizes a lower frequency output than a single post-scale counter, C.
 - Cascading two C counters expands the effective range of C counters.
Clock Multiplication and Division

• Each Cyclone V PLL provides clock synthesis for PLL output ports using the \(\frac{M}{N \times C} \) scaling factors
 – The input clock is divided by a pre-scale factor, \(N \), and is then multiplied by the M feedback factor
 – The control loop drives the VCO to match \(f_{\text{in}} \times \left(\frac{M}{N} \right) \)
• The Quartus software automatically chooses the appropriate scaling factors according to the input frequency, multiplication, and division values entered into the ALTERA_PLL megafonction

Counter and Divider Ranges

• Pre-Scale Counter, \(N \) and Multiply Counter, \(M \)
 – Each PLL has one pre-scale counter, \(N \), and one multiply counter, \(M \), with a range of 1 to 512 for both \(M \) and \(N \)
 – The \(N \) counter does not use duty-cycle control because the only purpose of this counter is to calculate frequency division
 – The post-scale counters have a 50% duty cycle setting
 – The high- and low count values for each counter range from 1 to 256. The sum of the high- and low-count values chosen for a design selects the divide value for a given counter
Counter and Divider Ranges

• Fractional Mode
 – In fractional mode, the M counter divide value equals to the sum of the "clock high" count, "clock low" count, and the fractional value
 – The fractional value is equal to \(K/2^X \), where \(K \) is an integer between 0 and \((2^X - 1) \), and \(X = 8, 16, 24, \) or \(32 \)

• Integer Mode
 – For PLL operating in integer mode, M is an integer value

Programmable Phase Shift

• The programmable phase shift feature allows the PLLs to generate output clocks with a fixed phase offset

• The VCO frequency of the PLL determines the precision of the phase shift. The minimum phase shift increment is 1/8 of the VCO period. For example, if a PLL operates with a VCO frequency of 1000 MHz, phase shift steps of 125 ps are possible

• The Quartus software automatically adjusts the VCO frequency according to the user-specified phase shift values entered into the megafuntion
Programmable Duty Cycle

• The programmable duty cycle allows PLLs to generate clock outputs with a variable duty cycle
• This feature is supported on the PLL post-scale counters
• The duty-cycle setting is achieved by a low and high time-count setting for the post-scale counters
• To determine the duty cycle choices, the Quartus II software uses the frequency input and the required multiply or divide rate
• The post-scale counter value determines the precision of the duty cycle

Clock Networks

• The Cyclone V devices contain the following clock networks that are organized into a hierarchical structure:
 – Global clock (GCLK) networks
 – Regional clock (RCLK) networks
 – Periphery clock (PCLK) networks
 • On some Cyclone V devices (not on the Cyclone V on the DE0-CV board)
Clock Resources in Cyclone V Devices

- For the Cyclone V E A4 device
 - Clock input pins
 - 18 single-ended or 9 differential
 - CLK[0..3][p,n], CLK[6][p,n], and CLK[8..11][p,n] pins
 - CLOCK_50 is the CLK0p pin on the DE0-CV board
 - GCLK and RCLK networks
 - GCLK networks: 16
 - RCLK networks: 88
 - Clock sources: CLK[0..3][p,n], CLK[6][p,n], CLK[8..11][p,n] pins, PLL clock outputs, and logic array

Global Clock Networks

- Cyclone V devices provide GCLKs that can drive throughout the device
- The GCLKs serve as low-skew clock sources for functional blocks, such as adaptive logic modules (ALMs), embedded memory, and PLLs
- Cyclone V I/O elements (IOEs) and internal logic can also drive GCLKs to create internally-generated global clocks and other high fan-out control signals, such as synchronous or asynchronous clear and clock enable signals
Regional Clock Networks

- RCLK networks are only applicable to the quadrant they drive into.
- RCLK networks provide the lowest clock insertion delay and skew for logic contained within a single device quadrant.
- The Cyclone V IOEs and internal logic within a given quadrant can also drive RCLKs to create internally generated regional clocks and other high fan-out control signals.
Clock Network Sources

- In Cyclone V devices, clock input pins, PLL outputs, high-speed serial interface (HSSI) outputs, and internal logic can drive the GCLK, RCLK, and PCLK networks

- Dedicated Clock Input Pins
 - You can use the dedicated clock input pins (CLK[0..11][p,n]) for high fan-out control signals, such as asynchronous clears, presets, and clock enables, for protocol signals through the GCLK or RCLK networks
 - CLK pins can be either differential clocks or single-ended clocks
 - When you use the CLK pins as single ended clock inputs, only the CLK<#>p pins have dedicated connections to the PLL

- PLL Clock Outputs
 - The Cyclone V PLL clock outputs can drive both GCLK and RCLK networks
Clock Control Block

- Every GCLK, RCLK, and PCLK network has its own clock control block
- The control block provides the following features:
 - Clock source selection (dynamic selection available only for GCLKs)
 - Global clock multiplexing
 - Clock power down (static or dynamic clock enable or disable available only for GCLKs and RCLKs)

GCLK Control Block for Cyclone V Devices

The GCLK pin is not a dedicated clock input, but a pin capable of driving the PLL clock input. In user mode, you can dynamically control the clock select signals through internal logic. It supports a clock select pin and has a user-configurable clock select pin. When the device is in user mode, you can only select clock signals through the configuration file (`.bit` or `.of`) because the signals cannot be controlled dynamically.
Creating and Using a PLL Instance in Quartus

- Will create an altera_pll function instance using the Plug-In Manager

 Tools->IP Catalog->Library->Basic Functions-> Clocks; PLLs and Resets->PLL->Altera PLL

- Will specify parameters for configuring the PLL to generate a certain frequency clock signal based on the 50MHz input clock on the DE0-CV board

Configuring an altpll Megafuction
Configuring an altera_pll Megafuction (continued)

- Generates mypll.vhd
- Additional Megawizard screens not shown here since they are not used in this example
 - Default selections used for all screens not shown
- A Signal Tap II instance can be used to display the generated clock output